A New Formulation of Multi-zone Combustion Engine Models
نویسندگان
چکیده
Cylinder pressure simulation has grown to become an important tool when developing and evaluating new engine concepts and control strategies. A new formulation of zero-dimensional multi-zone models is developed and described. A general model structure is formulated that rely on a set of differential algebraic equations that are easy to solve. The selected formulation also results in models that are easy to scale, i.e. add new zones, and to increase complexity, which is a result of the selected structure. A number of important issues that can cause problems when simulating the model are treated. It is shown: a) How a new zone is initialized. b) How variables of varying magnitude can be scaled to avoid numerical difficulties. c) How numerical errors accumulated during the simulation can be reduced by using a set of consistency equations.
منابع مشابه
Optimization of GRI-mech 3.0 Mechanism using HCCI Combustion Models and Genetic Algorithm
This paper presents a modeling study of a CNG Homogenous Charge Compression Ignition (HCCI) engine using single-zone and multi-zone combustion models. Authors' developed code could be able to predict engine combustion and performance parameters in closed part of the engine cycle. As detailed chemical kinetics is necessary to investigate combustion process in HCCI engines, therefore, GRI-m...
متن کاملA Predictive Model for the Combustion Process in Dual Fuel Engines at Part Loads Using a Quasi Dimensional Multi Zone Model and Detailed Chemical Kinetics Mechanism
This work is carried out to investigate combustion characteristics of a dual fuel (diesel-gas) engine at part loads, using a quasi-dimensional multi zone combustion model (MZCM) for the combustion of diesel fuel and a single zone model with detailed chemical kinetics for the combustion of natural gas fuel. Chemical kinetic mechanisms consist of 184 reactions with 50 species. This combustion mod...
متن کاملControlling the Power Output and Combustion Phasing in an HCCI Engine
In development of Homogeneous Charge Compression Ignition (HCCI) engines, simultaneous control of combustion phasing and power output has been a major challenge. In this study, a new strategy is developed to control the engine power output and combustion phasing at any desired operating condition. A single zone thermodynamic model coupled to a full kinetic mechanism of Primary Reference Fuels (...
متن کاملPrediction of Major Pollutants Emission in Direct-Injection Dual-Fuel Diesel And Natural-Gas Engines
The dual-fuel diesel engine (D.F.D.E) is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the D.F.D.E needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons (U7HC) and Carbon Monoxide (CO) emission, because the concentration of thes...
متن کاملA Method for Pre-Calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-Objective Genetic Algorithm
Diesel engine emission standards are being more stringent as it gains more publicity in industry and transportation. Hence, designers have to suggest new controlling strategies which result in small amounts of emissions and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good approach inasmuch as several types of ...
متن کامل